文章编号: 0258-7025(2009)Supplement 1-0075-04

百纳秒激光脉冲在高非线性光子晶体光纤中产生 超连续谱的实验研究

张世强^{1,2} 李 霄¹ 许晓军¹ 陈胜平¹ 景春元²

(1国防科学技术大学光电科学与工程学院,湖南长沙410073;2中国人民解放军63655部队,新疆841700)

摘要 利用脉宽为 200 ns,重复频率为 3.3 kHz,功率可调的声光调 Q 激光器抽运高非线性的光子晶体光纤,产生 了覆盖 600 nm 到 1500 nm 展宽的超连续谱(SC),分析了其产生的原因。研究表明,在零色散波长抽运时,光谱展 宽以自相位调制为主,同时三阶色散的影响显著,传输脉冲发生振荡。研究还发现,抽运光的峰值功率越高,得到 的超连续谱现象越明显,展宽越宽。

关键词 光谱学;超连续谱;百纳秒脉冲;光子晶体光纤;峰值功率 中图分类号 TN253; O437 **文献标识码** A **doi:** 10.3788/CJL200936s1.0075

Experimental Study of Supercontinuum Generation by Hundred Nanosecond Pulse in Highly Nonlinear Photonic Crystal Fiber

Zhang Shiqiang^{1,2} Li Xiao¹ Xu Xiaojun¹ Chen Shengping¹ Jing Chunyuan²

⁽¹ College of Optoelectric Science and Engineering, National University of Defense Technology, Changsha, Hunan 410073, China

² 63655 Unit of The Chinese People's Liberation Army, Xinjiang 841700, China

Abstract The supercontinuum (SC) from 600 nm to 1500 nm is generated in the highly nonlinear photonic crystal fiber, pumped by acoustic-optic Q-switch pulses with a duration of 200 nm, a repetition rate of 3.3 kHz and tunable power. And the generation causes are also analysised. It is shown that when the pump wavelength overlaps with the zero- dispersion wavelength self-phase modulation and third-order dispersion plays an important role, the propagating pulses will oscillate. With the increasing of the peak power of pump pulse , the pectral width becomes wider. **Key words** spectroscopy; supercontinuum; hundred nanosecond pulse; photonic crystal fiber; peak power

1 引 言

超连续谱(SC)的产生是一种十分复杂的非线 性现象,其特征是强光脉冲通过非线性介质后,脉冲 谱宽被大大展宽,展宽后谱宽覆盖几十纳米,甚至几 百纳米,故也称为白光光谱。自 Alfano等^[1]利用倍 频锁模皮秒脉冲激光抽运 BK7 玻璃,首次获得 400 ~700 nm 的光谱起,关于超连续谱的研究飞速发 展,超短脉冲放大技术将飞秒脉冲峰值功率密度提 高到了 10¹²~10¹⁴ W/cm²,超连续光谱宽度及转换 效率显著提高^[2]。特别是随着光子晶体光纤(PCF) 的出现,利用其零色散点可调的特性^[3]和高度的非 线性^[4],用作超连续谱的抽运介质,提高了超连续谱 展宽宽度和平坦度。Ranka^[5]等采用110 fs 脉冲光 源在空气-石英微结构光纤的零色散点附近抽运,获 得了在390~1600 nm 范围内平坦变化的超连续 谱,随后 Coen 等^[6]利用60 ps 抽运脉冲产生超连续 谱。产生 SC 谱的激光光源一般都是皮秒和飞秒^[7] 量级,使用纳秒量级的激光脉冲及连续波作为光源 的也有报道,Dudley 等^[8]用脉宽为0.8 ns 的光脉 冲,在空气-石英微结构光纤中传输时,得到了谱宽 达到 300 nm 的 SC 谱。Cumberland^[9]等将50 W 的掺镱连续波光纤激光器耦合进 20 m 的 PCF 中,

作者简介:张世强(1982-),男,硕士研究生,主要从事固体激光器方面的研究。E-mail: 007_zsq@163.com

导师简介:许晓军(1973-),男,研究员,博士,主要从事固体激光器、大气光学与自适应光学等方面的研究。

光

产生了展宽 600 nm,输出功率 29 W 的超连续谱光 源。

研究表明,高的峰值功率是产生超连续谱的重要因素^[10]。目前,超短脉冲激光器由于可提供极高的峰值功率,被广泛地应用于超连续谱激光的抽运 光源,但其价格昂贵。连续波固体激光器难以兼顾 高功率和高光束质量,限制了其在超连续谱产生中 的应用。声光调 Q 的纳秒量级的激光器不但工业 化程度高,而且能够在低平均功率下提供高峰值功 率的脉冲激光,因此纳秒激光在光子晶体光纤中产 生超连续谱的特性研究有较强的实用价值。

本文研究了用搭建的脉宽为 200 nm,重复频率 为 3.3 kHz,波长为 1064 nm 的声光调 Q 激光源作 为抽运光源,耦合到光子晶体光纤中,得到覆盖 600~1500 nm展宽的超连续谱。

2 实验系统

2.1 光子晶体光纤参数

实验中所用的光子晶体光纤是由丹麦 Crystal Fiber 公司提供的,其端面显微图如图 1 所示。包层 和被覆层的直径分别为 60 μ m 和 120 μ m,平均纤芯 尺寸为 4.98 μ m,包层中的空气孔间距为 3.28 μ m, 气孔直径与平均孔间距之比为 0.48,数值孔径约为 0.2,这些参数的设计可以获得低的色散系数和高的 非线 性效应。采用光子晶体光纤的模场面积 (14 μ m²)近似作为有效纤芯面积(A_{eff}), $n_2=2.6$ ×10⁻²⁰ m²/W,计算了在波长 1.064 μ m 处光子晶 体光纤的非线性系数 $\gamma \approx 2\pi n_2/\lambda A_{eff} \approx 11$ W/km。

图 1 光子晶体光纤的端面显微图 Fig. 1 Micrograph of the end face of the photonic crystal fiber

2.2 实验装置

图 2 为实验装置示意图,在侧抽运 Nd:YAG 模块中插入声光调 Q 晶体,产生重复频率为 3.3 kHz,脉宽约为 200 ns,中心波长在 1064 nm 的短脉 冲抽运光,其输出功率是可调的。经过聚焦耦合进 16 m长的光子晶体光纤中,采用聚焦透镜为焦距 8 mm,数值孔径为 0.3 的非球面镜,将光子晶体光纤 放置在五维调整架上,这样光纤调节可以具有很高的精度,采用光谱分析仪(OSA)测量光纤前后的光 谱变化,用功率计测量光子晶体光纤输出端功率。

为保证光束质量在有较高输出功率的情况下仍 能满足耦合要求,在实验过程中,精确计算限模小孔 的位置和大小,在尽可能考虑功率适中的情况下,放 置小孔。另外对抽运光的输出参数进行测量,精确 计算,选择合适的透镜和耦合位置,使抽运光尽可能 高效地耦合进光子晶体光纤。

图 2 实验装置示意图

2.3 耦合系统的设计

激光器输出 $0\sim10$ W 可调的高斯光束,光束质 量 M^2 因子 1.3,发散角约为 1.5 mrad。自由传播 距离 160 cm 后用耦合透镜耦合,此时光斑大小 w(l) 为 1.41 mm。

当传输距离 $L \gg F$ 时,有

$$w'_{\circ} \approx \frac{\lambda}{\pi w(l)} F.$$
 (1)

要能够将半径为 1.41 mm 的光耦合进纤芯直 径为 5 μm 的光子晶体光纤中,需要的透镜焦距约 为 10 mm,并考虑数值孔径不能太大。实验中选择 用 F = 8 mm,数值孔径为 0.3 的非球面镜进行耦 合,调整五维光纤调整架,使抽运激光尽可能多地耦 合进入光子晶体光纤中。

3 实验结果及分析

实验中通过改变 Nd: YAG 晶体的输入电流并 调整耦合透镜以及光纤调整机架,改变耦合进入光 子晶体光纤的脉冲光,从光子晶体光纤一端得到 3 mW 输出功率,此时将输出光照在白屏上,可以看到 清晰的红点,用光谱仪测量其光谱变化,逐渐加大抽 运光输入功率,记录光纤端输出光的功率和光谱。

在脉冲的初时频谱,在 1064 nm 附近有明显的 尖峰,如图 3 所示。随着输入功率的变化,光谱成分 发生明显的变化。当脉冲在较小功率(低于 3 mW) 下逐渐增加功率时,光谱只有轻微的展宽,如图 4 所 示。随着功率的继续增加,光谱右侧先有能量尖峰, 继而尖峰向右侧移动并逐渐展宽,同时左侧有新频 产生。随着抽运功率的继续增加。新的频率成分逐 渐扩展,能量也进一步增加。图 5 为 40 mW 时光纤 端输出的光谱图,可以看出光谱已经覆盖较宽谱段。 这期间输出谱的主峰逐渐向长波方向移动,并且能 量也逐渐转移向新增频率。当输出功率达到 110 mW时,超连续谱覆盖 600~1500 nm 的谱段, 如图 6 所示。此后不断提高输入功率,谱线分布更 加均匀,但展宽基本不再增加。

图 3 光纤端输出功率 1 mW 时的光谱 Fig. 3 Supercontinuum generated by using pulse of 1 mW power

pulse of 3 mW power

这一超连续谱产生过程可以用超短脉冲的非线 性传输理论加以解释^[11~15]。在低功率(低于3 mW) 情况下,非线性长度 $L_{\text{NL}} = \frac{1}{\gamma P_0} < 1 \text{ m}(P_0$ 为峰值功 率),由于在零色散波长处 $\beta_2 = 0$,由二阶色散定义 的色散长度 $L_{\text{D}} = \frac{T_0^2}{|\beta_2|}$ 趋于无穷,而光纤长度为 16 m,故 $L_{\text{D}} \gg L \gg L_{\text{NL}}$,自相位调制(SPM)占主导, 频谱向高频和低频两个方向展宽。另外虽然二阶色 散为零,但三阶色散在脉冲的传输中很重要,脉冲的

不对称性导致了频谱的不对称性。而脉冲前沿的自 陡峭效应使得"蓝侧"(即较短波长方向)也有一定的 展宽。增加抽运功率, L_{NL}减小,非线性效应加强, 光谱继续展宽。实验测量结果验证了理论分析。

此外在实验中发现,当抽运功率增大到 1.5 W 以上时,耦合效率会急剧地下降,超连续谱的功率不 再随着抽运光功率的增大而增大,谱宽也不再变宽。 这与在一定腔体结构下,激光器输出功率变大,光束 质量下降有关。另外,在超连续谱的应用中,不但要 求光谱的展宽要宽,还要求光谱的平坦度要好,但从 图 3~图 6 的光谱图可以看出,超连续谱中一直存 在抽运光的尖峰,可以用窄带滤波片或带通滤波片 选择需要的谱段。

4 结 论

脉冲峰值功率是影响光束在光纤中传输的重要 因素^[12],研究表明,高的峰值功率更容易发生非线 性效应,所以产生超连续谱的抽运光多采用超短脉 冲激光,如皮秒、飞秒激光源。本文用声光调Q的 百纳秒量级脉冲激光抽运高非线性的光子晶体光纤 产生超连续谱。实验表明,用脉宽为百纳秒量级短 脉冲激光在光子晶体光纤零色散点附近抽运光纤, 同样能够得到较好的展宽效果。

参考文献

- 1 R. R. Alfano, S. L. Shapiro. Emission in the region 4000 to 7000 Å via four-photon coupling in glass[J]. *Phys. Rev. Lett.*, 1970, 24(11): 584 \sim 587
- 2 R. H. Stolen, C. Lee, P. K. Jain. Development of the stimulated Raman spectrum in single-mode silica fibers[J]. J. Opt. Soc. Am. B, 1984, 1(4): 652~657
- 3 D. Mogilevtsev, T. A. Birks, P. St. J. Russell. Group-velocity dispersion in photonic crystal fibers [J]. Opt. Lett., 1998, 23(21): 1662~1664
- 4 N. G. R. Broderick, T. M. Monro, P. J. Bennett *et al.*. Nonlinerity in holey optical fibers: measurement and future opportunities[J]. *Opt. Lett.*, 24(20): 1395~1397
- 5 J. K. Ranka, R. S. Windeler, A. J. Stentz. Visible continuum generation in air-silica microstructure optical fibers with anormalous dispersion at 800 nm[J]. Opt. Lett., 2002, 25(1): 25~27
- 6 S. Loen, A. H. L. Chau, R. Leonhardt *et al.*. White-light supercontinuum generation with 60-ps pump pulses in a photonic crystal fiber[J]. *Opt. Lett.*, 2001, 26(17): 1356~1358
- 7 Meng Jia, Hou Lantian, Zhou Guigao *et al.*, Fabrication and study on the small-core index-guiding photonic crystal fiber[J]. *Chinese J. Lasers*, 2008, **35**(9): 1350~1354
 二 在 房田田田田知道, 小花长竹菜已日田地之目日地, 石田市地区

孟 佳,侯蓝田,周桂耀等.小芯径折射率引导型光子晶体光纤 的制备和研究[J].中国激光,2008,**35**(9):1350~1354

8 J. M. Dudley, L. Provino, N. Grossard et al. . Supercontinuum

generation in air-silica microstructured fibers with nanosecond and femtosecond pulse pumping[J]. J. Opt. Soc. Am. B, 2002, **19**(4): 756~771

- 9 B. A. Cumberland, J. C. Travers, S. V. Popov et al., 29 W high power CW supercontinuum source [J]. Opt. Eexpress, 2008, 16(8): 5954~5962
- 10 Chen Yongzhu, Li Yuzhong, Qu Gui *et al.*. Numerical research of flat supercontinuum generated in dispersion-flattened/decreasing fiber [J]. *Chines J. Lasers*, 2004, **31**(10): 1239~1244
 陈泳竹,李玉忠,屈 圭等. 色散平坦渐减光纤产生平坦超连续 谱的数值研究[J]. 中国激光. 2004, **31**(10): 1239~1244
 11 Chen Yongzhu, Yu Wencheng, Cui Hu et al. The effect of fiber
- 11 Chen Yongzhu, Xu Wencheng, Cui Hu *et al*.. The effect of fiber dispersion on generation of supercontinuum [J]. Acta Optica Sinica, 2003, 23(3): 297~301
 陈泳竹,徐文成,崔 虎等.光纤色散对超连续谱产生的影响 [J]. 光学学报, 2003, 23(3): 297~301
- 12 Govind P. Agrawal. Nonlinear Fiber Optics & Application of Norlinear Fiber Optics [M]. Jia Dongfang, Yu Zhenhong, Tan Bin *et al.*. transl., Beijing: Publishing House of Electronic Industry, 2002 阿戈沃. 非线性光纤光学原理及应用 [M]. 贾东方, 余震虹, 谈

阿戈沃.非线性元年元字原理及应用[M]. 贡东方, 汞晨虹, 饭 斌等译.北京:电子工业出版社, 2002

- 13 S. Coen, A. H. L. Chau, R. Leonhardt *et al.*. Supercontinuum generation by stimulated Raman scattering and parametric fourwave mixing in photonic crystal fibers[J]. J. Opt. Soc. Am. B, 2002, **19**(4) 753~764
- 14 Z. Yusoff, J. H. Lee, W. Belardi *et al.*. Raman effects in a highly nonlinear holey fiber: amplification and modulation[J]. *Opt. Lett.*, 2002, 27(6): 424~426
- 15 W. Wadsworth, N. Joly, J. Knight *et al.*. Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres[J]. *Opt. Express*, 2004, **12**(2): 299~ 309